Characterizing the Ability of Parallel Array Generators on Reversible Partitioned Cellular Automata

نویسندگان

  • Kenichi Morita
  • Satoshi Ueno
  • Katsunobu Imai
چکیده

A PCAAG introduced by Morita and Ueno is a parallel array generator on a partitioned cellular automaton (PCA) that generates an array language (i.e., a set of symbol arrays). A \reversible" PCAAG (RPCAAG) is a backward deterministic PCAAG, and thus parsing of two-dimensional patterns can be performed without backtracking by an \inverse" system of the RPCAAG. Hence, a parallel pattern recognition mechanism on a deterministic cellular automaton can be directly obtained from a RPCAAG that generates the pattern set. In this paper, we investigate the generating ability of RPCAAGs and their subclass. It is shown that the ability of RPCAAGs is characterized by two-dimensional deterministic Turing machines, i.e., they are universal in their generating ability. We then investigate a monotonic RPCAAG (MRPCAAG), which is a special type of an RPCAAG that satisses monotonic constraint. We show that the generating ability of MRPCAAGs is exactly characterized by two-dimensional deterministic linear-bounded automata.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of low power random number generators for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA.  Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...

متن کامل

Generic parity generators design using LTEx methodology: A quantum-dot cellular automata based approach

Quantum-dot Cellular Automata (QCA) is a prominent paradigm that is considered to continue its dominance in thecomputation at deep sub-micron regime in nanotechnology. The QCA realizations of five-input Majority Voter based multilevel parity generator circuits have been introduced in recent years. However, no attention has been paid towards the QCA instantiation of the generic (n-bit) even and ...

متن کامل

Generic parity generators design using LTEx methodology: A quantum-dot cellular automata based approach

Quantum-dot Cellular Automata (QCA) is a prominent paradigm that is considered to continue its dominance in thecomputation at deep sub-micron regime in nanotechnology. The QCA realizations of five-input Majority Voter based multilevel parity generator circuits have been introduced in recent years. However, no attention has been paid towards the QCA instantiation of the generic (n-bit) even and ...

متن کامل

Design of low power random number generators for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA.  Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...

متن کامل

A fast wallace-based parallel multiplier in quantum-dot cellular automata

Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJPRAI

دوره 13  شماره 

صفحات  -

تاریخ انتشار 1999